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(Received 21 June 1990) 

Finite-amplitude, axially symmetric oscillations of small (0.2 mm) liquid droplets in 
a gaseous environment are studied, both experimentally and theoretically. When the 
amplitude of natural oscillations of the fundamental mode exceeds approximately 
10% of the droplet radius, typical nonlinear effects like the dependence of the 
oscillation frequency on the amplitude, the asymmetry of the oscillation amplitude, 
and the interaction between modes are observed. As the amplitude decreases due to 
viscous damping, the oscillation frequency and the amplitude decay factor reach 
their asymptotical values predicted by linear theory. The initial behaviour of the 
droplet is described quite satisfactorily by a proposed nonlinear inviscid theoretical 
model. 

1. Introduction 
The problem of oscillating droplets has been an object of intense study for more 

than a century, both to gain a theoretical understanding (Kelvin 1890; Chan- 
drasekhar 1959, 1961 ; Reid 1960; Prosperetti 1977, 1980a, b)  and also in view of 
various technological applications (Valentine, Sather & Heideger 1965 ; Strani & 
Sabetta 1988). The first mathematical model of linear droplet oscillations in vacuum 
in the case of an inviscid fluid is due to Rayleigh (1879). The generalized linear 
solution of the problem which includes the influence of a surrounding medium is 
given by Lamb (1932). The solution describes the instantaneous deformation of the 
droplet shape by an infinite series of the surface spherical harmonics, where each 
term of this function corresponds to one independent natural oscillation mode. The 
axially symmetric form of this solution is 

where P,(cosO) are the Legendre polynomials, R, is the unperturbed radius of the 
droplet, a, is the instantaneous amplitude of the Zth mode of oscillation, and 8 is the 
polar angle of the spherical coordinate system with its origin at the centre of the 
spherical drop. The frequency a, of the Eth oscillation mode of a liquid drop in 
vacuum or in air is given by 

where CT is the surface tension of the droplet medium and p is its density. Subsequent 
linear analyses have included the viscosity of the droplet (Chandrasekhar 1959 ; Reid 
1960) and, later, viscous effects of an outer fluid (Miller & Scriven 1968). The derived 
general dispersion equation describes small-amplitude oscillations of the viscous 
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droplet in the viscous medium. However for low-viscosity liquids (e.g. water, 
ethanol) and relatively large droplets (R, 2 50 pm) in dynamically inactive 
surroundings the general description simplifies and the so-called irrotational 
approximation, previously obtained by Lamb (1932), applies. Then, the decay time 
and the oscillation frequency are given by 

PR: 
- p(Z- 1 )  (21+ 1 )  

7 -  (3) 

and G: = Qz( 1 - (n, T L ) - ' ) ~ .  (4 1 
The viscosity, p ,  of the fluid reduces the natural oscillation frequency. This effect is 
of second order so that the frequency shift for low-viscosity liquids is negligibly 
small. Equation (3) shows that damping increases very quickly for higher oscillation 
modes. Therefore, in most cases the description of the droplet oscillation given by (1) 
is limited to  the first few modes. 

In  their normal mode analysis of the initial motion of the viscous droplet in 
vacuum Chandrasekhar (1959), Prosperetti (1980a, b )  and Brosa (1988) found that 
for each surface mode an infinite discrete frequency spectrum exists. This is 
apparently due to the viscosity, which is responsible for the vorticity generation by 
a free moving surface. Hence, the initial behaviour of a viscous droplet may 
apparently deviate from the least-damped normal modes (Prosperetti 1977) which 
are described by a damped harmonic oscillation. However, asymptotically with time 
only these modes remain. Prosperetti (1980b) shows that these viscous effects 
become negligibly small if the dimensionless viscosity p/(palt,): < 0.1. This condition 
is fulfilled in the experiments presented here, therefore it is assumed that for small 
oscillation amplitudes the irrotational approximation given by (3) and (4) still 
applies. 

Nonlinear oscillations of a droplet were analysed by Tsamopoulos & Brown (1983), 
but only for the case of inviscid liquids. Looking for strictly periodic oscillations they 
have found that the oscillation frequency of the fundamental mode decreases with 
increasing amplitude. The effect of small viscosity was incorporated into a nonlinear 
numerical study by Lundgren & Mansour (1988). They found that viscosity may 
have a relatively large effect on the behaviour of the higher oscillation modes, 
changing their near-harmonic resonance coupling with the fundamental mode 1 = 2. 

Experimental measurements performed by Trinh, Marston & Robey (1987), Hiller 
& Kowalewski ( 1 9 8 9 ~ )  for small oscillation amplitudes confirm the values of 0, 
predicted by the linear theory for the fundamental mode. The only experimental 
work dealing with large-amplitude oscillations of droplets that we could find is that 
of Trinh & Wang (1982). Their experiment was performed on drops suspended in a 
neutrally buoyant and immiscible liquid. The results confirm qualitatively the 
predictions of the above nonlinear theories, i.e. the decrease of the oscillation 
frequency with increasing amplitude. 

The lack of available experimental data concerning the nonlinear behaviour of 
droplets oscillating in air encouraged us to undertake the present investigation. The 
present study of nonlinear droplet dynamics is an inherent part of the method of 
measuring dynamic values of surface tension developed in Hiller & Kowalewski 
(1989 a) .  Unfortunately, both of the above-mentioned theoretical analyses have very 
limited applicability to  our experimental studies of the droplet oscillations. The first 
one (Tsamopoulos & Brown), with its accuracy limited to second-order effects, does 
not provide a method of checking the accuracy of the results obtained. The second 
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analysis (Lundgren & Mansour) seems to be rather difficult to be implemented 
practically for the measurements of dynamic surface tension as it is a pure numerical 
method and comparison of its results with our experimental data would require 
additional surface parameterization. Hence, in the following, we will describe the 
experimental method and results obtained for free oscillating droplets, followed by 
a new nonlinear model of inviscid droplet oscillations, which allows us to analyse the 
experimental data. 

2. Experimental 
2.1. The apparatus and method 

The overall experimental arrangement is shown schematically in figure 1. The 
droplets were generated by the controlled breakup of a laminar jet discharging from 
a convergent nozzle into a gaseous environment. The pressure inside the plenum 
chamber of the nozzle is modulated by a piezoceramic transducer, described 
previously (Hiller & Kowalewski 1 9 8 9 ~ ) .  The resulting jet perturbations are 
proportional to the voltage U V,, applied to  the transducer. By proper choice of the 
modulation, practically monodispersed droplets oscillating in axially symmetric 
modes are generated during the breakup process of the jet. The required droplet 
radius, within the range 100 to 300 pm, is obtained by varying the jet radius which 
is about half that  of the droplets. Once a droplet is detached from the liquid jet, i t  
becomes an isolated mass of fluid suspended in space. Any subsequent motion of this 
isolated mass depends primarily on the surface tension forces and the velocity 
distribution in the fluid a t  the instant of breakoff from the jet. The initial velocity 
distribution and subsequent accelerations created by the surface tension force 
produce, owing to the viscosity, damped oscillatory motion of the droplet until it 
reaches its equilibrium spherical shape. 

Initial deformations of the droplet observed after its detachment from the jet are 
illustrated in figure 2 .  As the droplet velocity is relatively small (a few m/s) the 
influence of aerodynamic forces on its shape is assumed to be negligibly small. The 
droplet is observed through a microscope in bright field illumination. A pulsed light- 
emitting-diode (LED) is used as a light source (Stasicki, Hiller & Meier 1990). The 
exposure times are below 0.2 ps. The images of the droplet are registered by CCD 
camera (Sony XC77CE). Data acquisition and storage are performed with a 386 
Personal Computer (IBM compatible) equipped with an %bit digitizing board 
VSlOO/768 (Imaging Technology Inc.) and 140 Mbyte hard disk. All further 
processing of the images (image analysis and shape fitting) takes place on pVAX I1 
and IBM3090 computers respectively. 

Two methods of imaging are applied. First is a multi-exposure method, shown in 
figure 2. This method, described in detail previously (Hiller & Kowalewski 1989b), 
provides high temporal and spatial resolution for about one oscillation period. 
However, to  extend the observation time, a rather tedious matching procedure to 
combine phases of separate observations done a t  different distances from the nozzle 
is required. Therefore, to facilitate observation of the droplets during longer periods 
a second recording method, based on a beat-frequency stroboscopic technique, was 
developed. For this purpose a digital phase-scanning device (Hiller, Kowalewski & 
Stasicki 1989) is used to change continuously the phase of the pulses triggering the 
LED drive, relative to the phase of the jet modulating frequency. Thus the 
stroboscopically observed phenomena slowly change their phase and their de- 
velopment in time can be easily recorded. By changing synchronously the position 
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FIQURE 2. Multiexposure of an oscillating droplet observed a short time after its generation. The 
equilibrium radius of the droplet R, = 210 pm, the time interval between exposures is 7.8 ps. The 
solid line is function (5) with ZmaX = 10 fitted to the droplet boundaries. 

of the camera, the development of the droplet shape is followed along its trajectory 
from the point of separation till it reaches the spherical form. This is possible as the 
reproducibility of the droplets generated by the controlled jet breakup is extremely 
high. Using this technique, the images of the droplet were recorded periodically by 
an image processor and stored on a hard disk of the computer. Usually sequences of 
200-300 images are taken. The recording time of one image is 3.6 s (time needed to 
save one image on the disk). The ‘real time’ resolution, controlled by the beat 
frequency, is kept in the range of 10-30 ps. It allows the registration of several 
periods of droplet oscillations in one sequence of images. 

2.2. Analysis of the droplet images 
As we can observe only the projection of a droplet, we must assume that its shape 
is convex and axially symmetric with respect to the nozzle axis, and that the axis of 
symmetry is parallel to the plane of observation (i.e. the sensor area of the camera). 
The three-dimensional form of a droplet is then completely defined by its contour 
R(0, t ) .  We assume also that a limited number of modes (lmax) suffices to describe the 
deformation of the droplet and that its volume remains constant (incompressible 
fluid). To fulfil the last condition we have to modify (i) ,  replacing unity by a volume 
correction term 6(t) .  This term is a function of time t only. The momentary 
description of the droplet surface by Legendre polynomials remains unaffected and 
is given by 

The first expansion term is 1 = 2 as 1 = 0 and 1 = 1 describe respectively the 
volumetric pulsation and the translatory motion of the droplet. The value of 6(t)  is 
calculated from the following equation : 

The value of 6, in practice, is very close to unity and therefore introduces only a slight 
modification into (1). However, this correction is needed for a precise determination 
of the volume of the droplets, which is not known a priori in the experiments. For 
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the practical evaluation of the coefficients of ( 5 )  the images of the droplet taken a t  
corresponding moments of exposure are first traced using computer-aided image 
analysis to draw out points of droplet boundaries. Up to 900 points are usually 
identified during this procedure. To speed up further calculation the number of 
points is reduced. First, smoothing the data with a FFT low-pass filter the stray 
points are eliminated. Then, about 100 ‘representative ’, uniformly distributed 
points are selected. These points are used to match the shape given by the function 
(5 ) .  

The analysis of the oscillations is in most cases limited to I,,, = 5. As the first 
mode of interest is 1 = 2, the fit depends on eight parameters: four surface 
deformation amplitudes the unknown equilibrium radius R, of a droplet, two 
coordinates and the rotation angle of a coordinate system connected with an image 
of the droplet. The least-square fitting of ( 5 )  to the previously found points of the 
droplet boundary is based on a quasi-Newton optimization method. The vectorized 
computer code run on an IBM 3090-3003 allows fitting of one droplet image with 
typically 100 points in about 0.5 s of CPU time. For some cases, especially at higher 
deformation amplitudes, the number of analysed modes was increased to Z,,, = 10, 
extending calculation time to about 2 s. 

I n  order to  compare the experimental results for droplet oscillations with 
theoretical predictions quantitatively, the correct value of the droplet radius R, must 
be known. The accuracy of measured droplet coordinates is directly proportional to 
the resolution of the optical system, which amounts to one pixel in the image plane. 
In our experiments the droplet images have mean diameters of about 250 pixels (the 
format of the sensor being 756 x 581 square pixels). Owing to the short exposure time 
(20011s) the blur due to the droplet motion is smaller than one pixel and can be 
neglected. Thus a single point of the image is defined with an accuracy better than 
0.5 %. The mean fitting error is typically 0.3 pixels for oscillation amplitudes up to 
a2 = 0.5. Hence, we may estimate the error of the measured droplet radius to be 
smaller than 0.2 %. 

The other source of possible errors is the presence of non-axially symmetric modes 
of oscillation. These will appear as fluctuations of the droplet radius R, obtained from 
the fitting procedure and such data are not the subject of further analysis. Owing to  
the high spatial resolution of the imaging system even small changes of the droplet 
radius due to its evaporation can be observed and measured. In  the present 
experiment with ethanol droplets of about 200 pm radius moving in the air, the 
measured rate of radius contraction was below 2 x m/s. It corresponds to 
approximately a 1.5 % variation of the oscillation frequency 52, during 10 ms 
observation time. This effect was taken into account when analysing the observed 
oscillations of the droplets (see Appendix A). The instant of image exposure is 
determined with an accuracy of 0.1 % of the oscillation period of the droplet. 

2.3. Experimental results 
The experiments were performed with ethanol (95 %) (denatured with methyl- 
ethyl-ketone) as a droplet medium. The physical properties of the liquid used 
measured by standard methods at 295 K are : density p = 803 f 1 kg/m3, viscosity 
,u = 1.2 k0.l mPa s and surface tension = 22.9k0.3 mN/m. The droplets are 
dispersed in air at normal atmospheric pressure and room temperature 295f 1 K. 

The droplets generated during breakup of the jet are usually interspersed with 
smaller satellite droplets. Depending on the nature of the applied initial jet 
disturbance a satellite droplet will merge with the following or the leading droplet at 
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some distance from the nozzle. This changes the droplet mass and generates an 
additional perturbation of its surface. Chaudhary & Maxworthy (1980) have 
demonstrated that varying the jet perturbation frequency and amplitude, and 
adding the third harmonic to the fundamental enables one to control the behaviour 
of the satellite drops and in some cases effects their elimination. The complete 
elimination of satellites requires large amplitudes of the jet perturbation which 
initiate strongly nonlinear oscillations of the generated droplets. 

In the following we present results obtained for an oscillating droplet generated at  
relatively small perturbation amplitude in the presence of a satellite droplet, and a 
droplet created without a satellite using large perturbation amplitudes with the 
fundamental frequency accompanied by its third harmonic. 

Figures 3 (a)-3 ( d )  display a short ( x 4 ms) time sequence of the instantaneous 
dimensionless oscillation amplitudes a, of a droplet for the modes I = 2, 3, 4 and 5 
respectively. The values of R, and a, are obtained from a series of 179 images of the 
droplet with the help of the fitting procedure described in $2.2. The mean 
undisturbed radius R0 of the droplet, calculated as an arithmetic mean of the values 
Ro, is equal to 177 pm. The droplet is generated at  a relatively small perturbation 
amplitude of the jet. The input voltage of the jet modulator U is equal 1 Vpp. The 
registration of the droplet oscillations begins shortly after it merges with a satellite 
droplet. The initial amplitude of the second mode (figure 3a) is about 0.3, whereas 
the amplitude of the third mode (figure 3 b )  is about 3 times smaller. In accordance 
with (3) the viscous damping becomes stronger with increasing mode number, as can 
be also seen from figure 3 (c ,  d ) ,  where the higher modes 1 = 4 ,5  are displayed. 

A t  first glance, the waveform of the oscillations for 1 = 2 ,3  seems to be that of a 
damped harmonic oscillator. A more careful analysis, however, reveals small 
variations of the oscillation period and an asymmetry between the positive (prolate) 
and negative (oblate) displacements. This type of oscillation may be simulated by 
introducing into the equation of motion of a damped harmonic oscillator a restoring 
force with a symmetric term (i.e. depending on even powers of the displacement). 
Using an asymptotic expansion for small amplitudes, we obtain the following time- 
dependent approximation for a, : 

The amplitude damping is given by 

Here, the term with a, accounts for the amplitude dependence of the oscillation 
frequency, p, represents the asymmetry of the amplitude al( t ) ,  and $( is the phase 
angle. A slight decrease of the droplet radius due to evaporation, observed during 
longer time sequences, is compensated with help of the normalization function N(t)  
defined in Appendix A (A 1). 

The six free parameters : al, p,, 7,, Q,, y,, and A,, were used to fit (7) and (8) to the 
measured values of the instantaneous amplitudes a2 and a,. The fitting procedure is 
based on the quasi-Newton optimization method mentioned earlier. The 'best fit ' 
curves displayed in figure 3 (a ,  b)  were obtained for the following values of the fitting 
parameters: 51, = 5939 (6414) s-l, 72 = 3.953 (4.193) x lO-'s, a2 = -0.19, p2 = 0.21, 
51, = 11342 (12421) s-l, 7, = 1.552 (1.497) x s, a, = -29.5, p3 = 3.59. For 
comparison the corresponding values of the linear theory, calculated from (2) and (3) 
by inserting measured values of (T and p,  are written in brackets. 

The observed weak increase of the oscillation frequency is well described by the 
parameter a2. However, owing to the short registration time and still large final 

al(t)  = A ,  sin {NQ,[(I - (52, T , ) - ~ ) ~ + ~ , A ~ I  t + $,I + P , A ~ .  (7)  

A,(t) = A0,exp ( - t /7 , ) .  (8) 
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FIGURE 3. Measured oscillation amplitudes of an ethanol droplet. Jet  excitation with 1 Vpp. 
(a) Mode I = 2 ;  ( b )  2 = 3 ;  (c) I = 4; ( d )  I = 5. Dashed line - best fit of the functions (7) and (8). 

amplitudes of the oscillations (A,(t = 3 ms) > 0.1) the fitting procedure does not give 
the correct asymptotic behaviour of the analysed curve. This brings out discrepancies 
between asymptotic and expected values of the oscillation frequency. Higher 
oscillation modes ( 1  = 4,5) demonstrate strong nonlinearities and the asymptotic 
analysis given by (7) and (8) fails for these modes. 

Oscillation amplitudes for a number of consecutive periods, from the droplet 
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FIGURE 4(u-d). As figure 3 but jet excitation with 3 Vpp. The arrow indicates the moment 
when the droplet merges with the satellite droplet. 

generation nearly a t  the jet tip until their disappearance, including the absorption 
of the satellite droplet, are displayed in figure 4. The mean droplet radius is 
172 pm and the perturbation amplitude of the jet is still small (V = 3 Vpp). The 
fitting procedure here gives quite reasonable approximations of the damping factor 
and of the asymptotic value of the oscillation frequency. The ‘best fit’ parameters 
(beginning after the satellite merging) and the corresponding ‘ linear theory values ’ 
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FIGURE 5.  Images of oscillating droplets at different moments after the breakoff from the jet. 
The solid line is function ( 5 )  with l,,, = 10 fitted to the droplet boundaries. 
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are 0, = 6440 (6696) s-l, 72 = 3.448 (3.959) x s, u2 = -0.88, p, = 0.36, Q3 = 
13420 (12966) s-', T~ = 1.474 (1.414) x 

It is interesting to note that the enhancement of nonlinear effects, expected due to 
the larger initial amplitude of oscillations, is evident mostly a t  the higher oscillation 
modes (figure 4c, d ). The nonlinear behaviour of the higher modes persists even when 
their amplitudes become very small. This effect, which is due to  second- and third- 
order resonance coupling, was found by Brown and co-workers in their theoretical 
analysis (Tsamopoulos & Brown 1983; Natarajan & Brown 1987). The fundamental 
mode seems to be less affected, as even merging of the satellite, which results in a 1 % 
increase of the droplet radius, has no visible influence on the evolution of its 
oscillations. 

A more extreme example of droplet oscillation is displayed in figure 5 .  The jet is 
modulated with amplitudes of U = 150 V,, a t  the fundamental frequency and 50 V,, 
at the third harmonic. The record of the droplet begins shortly after it breaks off from 
the jet. No satellite droplets are observed. The initial amplitude of the second mode 
reaches a value of A,, = 0.65. The mean undisturbed radius of the droplet is 202 pm. 
To improve the fitting analysis given in 52.2, nine surface modes (I,,, = 10) are used. 
The mean fitting error for the first twenty images of the strongly deformed droplet 
is about 2.5 % but for the following images reduces to 0.2 YO. 

Figure 6 shows the measured amplitudes of the observed droplet oscillations. The 
nonlinear effects are evident for all analysed modes. The fundamental mode still has 
clearly regular oscillations but its frequency does not change monotonically in time : 
it increases initially and then decreases. Thus the asymptotic behaviour of this mode 
could be analysed with the help of equations (7 )  and (8) only for times greater than 
2.5 ms. The values of the final oscillation frequency and damping factor so obtained 
are: Q, = 5275 (5261) s-l, 72 = 5.177 (5.460) x s. The values are quite close to 
those given in brackets and obtained from (2) and (3). The initial oscillation 
frequency of the fundamental mode, found with (7)  and (8) for the first 2.5 ms of the 
registration time, equals 3346 s-l. The corresponding frequency drift is 01, = -0.87. 
The droplet oscillations at higher modes exhibit nonlinearities which cannot be 
analysed with our simple approximation given by equations (7)  and (8). 

The following conclusions can be drawn from our experimental investigation : 
(i) For small and moderate amplitudes of the fundamental mode the asymptotic 

behaviour of the droplet oscillations can be well described with help of the simple 
model given in (7) and (8). The resulting values of the initial oscillation frequency and 
damping factor correspond to those provided by the linear theory, justifying its 
applicability for low viscosity liquids. To some extent, the approximation used holds 
for the third mode. The quality of the fit, however, is no longer as good as for 1 = 
2. For higher modes this description becomes unsatisfactory due to the pronounced 
mode interaction. 

(ii) The nonlinearity of the fundamental mode appears mainly in the form of a 
frequency drift. Assuming a square dependence of the frequency on the amplitude, 
this decrease is described by the nonlinearity parameter a,. The value of a, found in 
our experiments is in the range of -0.6 to -0.9. For an initial amplitude A,, = 0.65, 
which is about the highest value we observe in our experiments, the frequency of the 
second mode deviates from that calculated according to equation (2) by about 35%. 
This deviation decreases down to 5% for A ,  = 0.1. 

(iii) In  most of the cases observed up to  now, the oscillation frequency 
monotonically increases as the amplitudes becomes small. However, for some 
breakup configurations, as in the last example shown, frequency modulation 

S, C L ~  = 333, p3 = - 1.8. 
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FIQURE 6. Measured oscillation amplitudes of the droplet shown in figure 5 : large-amplitude 
excitation without satellite drops. (a )  Mode I = 2 ;  ( b )  I = 3;  (c) I = 4 ;  ( d )  I = 5. Dashed line - best 
fit of the function (7) and (8) for time t > 2.5 ms. 

appears. In  such cases the asymptotic analysis generally fails and can be applied only 
to the final behaviour of the oscillations. 

(iv) The decay rate of the amplitude of the fundamental mode, r2,  is in most cases 
quite well described by the exponential relation (8). 
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(v) At relatively small amplitudes of the fundamental mode there seems to be a 
very weak excitation of modes 1 = 3 and 1 = 4 from the base mode 1 = 2 (compare 
figures 3 b  and c ) .  This is inferred from the observation that the decay rates r2 as well 
as r3 and r4, measured in the above way, yield values very close to those calculated 
from equation (3). At larger fundamental-mode amplitudes (figures 4 and 6), a weak 
nonlinearity of this mode is accompanied by a strong nonlinear excitation of the 
higher modes. I n  this case their oscillation frequencies and damping factors cannot 
be described by the linear theory. 

This ‘oversensitiveness ’ of the higher oscillation modes, caused by nonlinear mode 
coupling, is obvious if we notice that most of the oscillation energy is stored in the 
fundamental mode. Therefore even a small energy transfer between the fundamental 
and a higher mode changes appreciably the energy balance of the last one. 

Summarizing, the asymptotic approximation equations (7) and (8) cannot be 
applied for the determination of the variation of the frequency of the first few 
consecutive oscillations after the break-off of the droplet. However, they describe 
well the asymptotic variation of the frequency of the fundamental mode for a long 
enough series of droplet oscillations. As we mentioned earlier, there exists a practical 
demand for a precise determination of the instantaneous values of surface tension 
using large-amplitude droplet oscillations, and therefore it was necessary to develop 
a theoretical model taking in account all the nonlinear effects. As a first attempt, the 
full theory of the nonlinear inviscid droplet oscillations will be described and its 
features compared with our experimental findings. 

3. Nonlinear model for inviscid droplet oscillations 
Although the theoretical analysis of droplet oscillations for inviscid and 

irrotational fluid motion is generally of limited applicability for the study of real 
liquids, the usefulness of the inviscid linear model for the asymptotic description of 
the oscillations of low-viscosity droplets justifies our attempt to use an inviscid 
approximation for the nonlinear modelling. The numerical method we use is a least- 
squares approximation to the kinematic and normal stress boundary conditions. The 
simple parameterization of the droplet surface (equation ( 5 ) )  allows us a 
straightforward comparison of numerical results with the experimental data. 

3.1. Mathematical formulation 
We analyse the motion of a droplet of an inviscid and incompressible liquid in 
vacuum, or in a gas of negligible density. For simplicity our analysis is limited to the 
axially symmetric case. The movement of the surface has been given by equation (5 ) .  
The assumption of constant droplet volume is satisfied by the volume correction 
function J ( t ) ,  given previously in equation (6). In  the following calculations the 
maximum number of surface modes l,,, is set to 6, found to guarantee sufficient 
accuracy at a still reasonable computation time (see Appendix B). 

The incompressible, irrotational and axially symmetric motion of the liquid in 
spherical polar coordinates ( r ,  0) is described by the Laplace equation : 

(9) V2@(r, 0,  t )  = 0, 0 G r G R(0, t ) ,  0 G 0 G R, 

with the velocity field given by 

u(r, 0, t )  = -V@(r, 0, t ) .  

Expanding the potential @ in partial solutions of the Laplace equation with 
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expression coefficients linear in the time derivatives al(t)  of the surface amplitudes, 
we can write 

1-2 1-2 i-1 

where +i(r,8) = ri&(cos6) and P,(cosB) are Legendre polynomials in cos8. 
From the kinematic boundary condition a t  the moving surface i t  follows that 

where, en, the vector normal to  the surface, is given by the unit vectors er and e, of 
the coordinate system in the following form : 

The pressure difference across the surface must be balanced by the surface tension. 
Assuming for simplicity zero pressure outside the droplet, the pressure a t  the droplet 

(14) 
surface is given by 

where H, the mean curvature of the surface, is 

~ ( r  = R(6, t ) ,  8 ,  t )  = -2aH(6 ,  t ) ,  

1 R2 -k 2(aeR)2 -R R R- cot Ba,R 
2 (  ((asR)2+R2)t R((aeR)2+R2)t 

H = - -  + 
The origin of our coordinate system is arbitrarily chosen and does not need to 
coincide with the centre of mass of the droplet. Moreover, it can be shown that during 
oscillations the centre of mass moves forward and backward in our coordinate 
system. Owing to the axial symmetry of the problem this movement takes place 
along the symmetry axis 6 = 0. The location of the mass centre at any time t can be 
found to be 

L a x  4 

e,s(a2, ..., almax) = e z ~ R , ~ l d ( c o s 6 ) c o s 6  6(a2, ..., almax)+ C a l ~ ( c o s 6 ) )  ; (16) 
1-2 

e, is the unit vector in the direction 6 = 0. 
Therefore the acceleration of the coordinate system relative to the centre of mass 

is : 
- 

Hence, the Euler equation in our non-inertial coordinate system has the following 
form : 

(18) 
VP a ,u+(uV)-u-se ,  = --. 

By use of the Bernoulli integral and (10) we find the equation for the pressure inside 
the droplet : 

where g(t )  is a time-dependent integration constant. 

P 

p ( r , 8 , t )  = p(a t@(r ,6 , t ) -$ (V@(r ,  6,t))2+S(t)rcos6+g(t)), (19) 

Combining ( 5 )  and ( 1  1 )  the kinematic boundary condition (12)  takes the form 

, 1 = 2 ,  ...) l,,, (20) 
'max a$i(r = R, 6, t )  aR 

(R2+(agR)')f+R- = 0 
an aa1 

C cli 
i-1 

giving a set of equations for the expansion coefficients czi. 
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As can be seen, the kinematic boundary condition should be now fulfilled not on 
the equilibrium spherical droplet (as in the case of the linear theory) but on the 
deformed droplet surface R(B, t ) .  This however is not automatically guaranteed by 
the assumed truncated expansion for the velocity potential (1 1 ) .  Therefore, instead 
of looking for the exact solution of (20), we try to find ‘the best fitting’ combination 
of the coefficients cll by minimizing the following integrals : 

Xf({clc)) = rl d(cos o l ~ f ( 0 ,  { c l ~ )  +min, 1 = 2, * * * lm,,, (21) 

where, L,(0, { c , ~ } )  is given by the left-hand side of the equation (20). 
The minimization conditions (21) represent a system of linear algebraic equations 

(axf/aclc  = 0), from which the coefficients clc can be found as functions of the droplet 
shape parameters a,  only: 

Cl&) = ca(a2(t), (22) 
The value i,,, -the limiting number of expansion terms in (20) - is chosen so that 
all relative errors of minimization 

are below For moderate deformation amplitudes (a2 < 0.4) this condition is 
fulfilled if i,,, = 12. 

In an analogous way the second boundary condition (15) is solved to obtain the 
unknown function g(t)  and the accelerations u,(t)  of the surface parameters. 
Substitution of the pressure in (14) by its representation given in (19) and expanding 
the velocity potential according to (1 1 )  results into the following equation : 

2a 
1-2 

which we solve by minimizing the integral over the square of its left-hand side LZ2(B, 
{ 4 3 ,  9)  

Mz({d l } ,  g )  = ll d(cos 0) . Y 2 ( B ,  {u,}, g )  + min. (25) 

From (25) follows a system of I,,, linear algebraic equation for g(t)  and ul ( t )  
(ax2/aul = o ; a x y a g  = 0). 

The related relative error of minimization 

(26) remains with the chosen limit I,, = 6 below lou2. 

differential equations : 

It can be shown that the linearization of (20) and (24) leads to Lamb’s linear 
equation : 

(28) 

Finally the surface motion of the droplet is given by a set of five nonlinear 

(i, = &(a2, ..., as,  d,, ..., us). (27) 

al(1- 1)  (1  + 2) 

PR: 
&,(t) = - a, ( t )  

and the function g(t) becomes a constant. 
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FIGURE 7. (a )  The oscillation modes generated for initial conditions: a,(t = 0) = 0.3, a,-,(t = 0) = 
u,-,(t = 0) = 0 using the present model, compared with (b)  the corresponding calculations of 
Lundgren & Mansour (1988) (reproduced from their figures 7 and 8, pp. 501-502). 

It should be pointed out that  the proposed method, solving the dynamic boundary 
condition directly, is generally equivalent to  the Hamilton principle (Sommerfeld 
1978), which is usually used (Brosa et al. 1989; Natarajan & Brown 1987) to  obtain 
a generalized differential equation of the droplet motion (like (27)). The problem is 
that the formal use of the Hamilton principle provides no information, like 
minimization error H,",., on the accuracy with which the assumed parameterization 
of the droplet surface fulfils the boundary condition for the pressure (14). For large 
oscillation amplitudes this is not guaranteed by the truncated expansion (5) and 
erroneous solutions can be obtained. 
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The final equations (21), (25), (27) are computed and solved numerically. The 
surface integrals resulting from (21) and (25) are calculated by the use of 
extrapolation in rational functions (Stoer 1972). The partial derivatives of the 
coefficients cll with respect to the shape parameters a, are obtained by polynomial 
extrapolation (Stoer 1972). Finally the ordinary differential equations (27) are 
integrated using a modified (by Fehlberg 1970) Runge-Kutta algorithm. The 
integration starts at t = 0 with initial values of surface deformation parameters a, 
and their velocities ci,, subsequently calculating values for the following time steps. 
The accuracy per time step relative to the norm (a: + . . . + afmsx + ci; + . . . + cifmBX)a is 
better than lop3. 

A dimensionless form of the equations used in the computation is obtained 
with the help of the following scaling: [length] = R,, [time] = T, = (R:p/3a)i and 
[energy] = E,  = (47caR3;. To keep track of the overall accuracy, the total oscillation 
energy of the droplet (sum of kinematic and potential one) and all related minimi- 
zation errors are monitored (see Appendix B). For a typical calculation with 300 time 
steps (two periods of the fundamental mode) the fluctuation of the total energy is 
below 1 %. This calculation requires about 20 minutes CPU time on an IBM 3090- 
300E. 

3.2. Comparison with other theoretical models 
The reliability of the theoretical model was tested by comparing its results with the 
trajectories published by Lundgren & Mansour ( 1988), who calculated numerically 
the nonlinear oscillations of low-viscosity droplets. For this purpose we simulate the 
initial conditions given by these authors as an example in their paragraph 5.1 (p. 
499), i.e. a,(t = 0) = 0.3 and a,-,(t = 0) = ci,-,(t = 0) = 0. The comparison of the 
obtained trajectories for the first three even modes (uneven modes are not excited) 
is displayed in figure 7. The numerical analysis of Lundgren & Mansour, based on the 
boundary-integral method, describes a droplet surface with 101 points. This 
corresponds to the surface parameterization with a large number of modes. In spite 
of the fact that our description of the surface displacements is limited to 5 modes, and 
that the viscous effects are neglected in our calculations, it can be seen that the 
displayed oscillation trajectories are very similar to those reproduced from their 
paper. This confirms the adequacy of our model but also suggests that small viscosity 
effects incorporated in their model are mainly responsible for the amplitude decay 
and have a relatively small effect on the mode interactions. 

Tsamopoulos & Brown (1983) and Durr & Siekmann (1987) have studied, 
respectively analytically and numerically, non-viscous droplet oscillations. Both 
calculations confirm that nonlinearity of the fundamental mode is mainly 
characterized by a decrease of the oscillation frequency with increasing amplitude. 
In figure 8 data describing this dependence are recalculated from both papers and 
compared with those obtained from the present calculations and experiments. 
Although such a comparison has limits, it is worth noticing that all theoretical 
models predict a very similar dependence of the oscillation frequency on the 
amplitude, indicating their mutual consistency. The data evaluated from experi- 
ments (where the viscous damping was responsible for the decrease of the 
amplitude) are generally below the theoretical values. 

3.3. Application to the experimental data 
The presented calculations have been carried out for an inviscid liquid. Therefore, to 
compare quantitatively numerical results with experiment we must limit our 
attention to a single period of the fundamental mode, during which damping effects 
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experimental data (.  . . . . . )  from figure 3 for 1 = 2 -6. ( f )  Calculated potential ( .  . . . . ), kinetic 
(----) and total (-) energy of the droplet. The potential energy of the droplet in equilibrium is 
set to 0 ;  time unit To is defined in the text. 

are not too strongly manifested. However, to  illustrate nonlinear effects better, we 
display in figure 9 several periods of the calculated and measured oscillations. 

The numerical calculations in figure 9 are compared with the experimental results 
of figure 3. The calculation, performed for physical parameters characterizing the 
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droplet (radius, density and surface tension), begins a t  to = 0.59 ms, defined by the 
moment when the amplitude a2 reaches its first maximum. The initial values of 
a,-5(to) and a2-5(to), evaluated from experimental data, are (0.283, 0.017, 0.015, 
0.006) and (0, -0.085,0.109, -0.061) respectively, whereas a,(to) and &(to) are taken 
equal to zero. As we can see, during almost one period of oscillation the calculated 
trajectories of the deformation amplitude a,(t) agree very well with experimental 
data. For longer time, owing to  damping the discrepancies of the amplitudes begin 
to be evident. However, both the period of oscillation (or, more aptly, the location 
of amplitude extrema) and the general form of az( t )  coincide very well with displayed 
experimental points. It is also worth noticing the similarities with the experimental 
data manifested by the higher surface modes a,(t) and a,(t). For example a,(t) shows 
a frequency modulation which appears simultaneously in the experimental and 
calculated curves. Furthermore, the nonlinear behaviour of a,@) is characterized by 
an amplitude modulation, which can be observed for both curves in figure 9(c). 
Similarly to  the experimental observations, in the calculated oscillations the 
nonlinear effects become most evident for higher (1  > 2) modes. 

To confirm the applicability of the theoretical model for the prediction of the 
surface tension of the liquid, the surface tension was calculated iteratively. The 
surface tension defines the characteristic time To needed for the calculation of the 
time derivatives of the initial velocities ri3-5(to). We start the calculation a t  the point 
where a, = 0 with an arbitrary value of surface tension. Then, the first period of the 
calculated oscillation trajectory a2(t) is compared with the experimental data and a 
new value of the time unit T,, hence of the surface tension, is used to calculate the 
velocities ci3-5(to). Repeating successively calculations until the period of a2(t)  does 
not change (three times was sufficient in our case), the final value of the surface 
tension is found. For the data of figure 3 the surface tension was found to be 
22mN/m, this is, remarkably, closer to the physical value than the asymptotic 
estimate of 19 mN/m, obtained for the same data using the linear approximation of 
equations (7) and (8). 

4. Conclusions 
Both experimental and analytical results indicate that for amplitudes of the 

fundamental mode exceeding 10 % of the droplet radius nonlinear effects cannot be 
neglected in the analysis of droplet oscillations. For short periods, the nonlinear 
effects observed in our experiments can be well predicted by the proposed inviscid 
theoretical model, confirming its applicability for prediction of the surface tension 
from large-amplitude oscillations of low-viscosity droplets. 

This research was supported by the Deutsche Forschungsgemeinschaft (DFG). 
The authors wish to thank Priv. Doz. Dr U. Brosa for his suggestions and valuable 
discussions concerning the presented theoretical model. 

Appendix A 
The present study is limited t o  axially symmetric deformations of a droplet. The 

droplet is observed from one direction only, therefore the validity of the above 
assumption must be proved by monitoring the temporary deviation of the 
equilibrium radius Ro(t) of the droplet from its mean value I?,. For this purpose 
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FIQURE 10. Temporal variation of the relative droplet radius. The arrow indicates the moment of 
merging with the satellite. (a) Typical effect of non-axially symmetric oscillations, ( b )  the droplet 
analysed in figure 10. 

relative values of the radius (R,-R,)/R, are fitted to the linear function 9 ( t )  = 
a.t+ b.  Only such measurements, for which the standard deviation of the fit is below 
2 x iO-3R0 are assumed to fulfil the assumption of axial symmetry and used for 
further analysis. To acquire the effect of monotonic radius variation on the 
oscillation frequency the empirical formula (7) includes the time variable nor- 
malization function : 

This modification, of minor significance in the present study, allows the analysis of 
oscillations of evaporating droplets, which will become one of our next aims. 

Figure 10 displays two examples of time variation of the instantaneous relative 
value of a droplet radius evaluated from the experimental observations. The first 
example, figure 10 (a), shows the typical effect of non-axially symmetric oscillations, 
not acceptable for our analysis; the second one, figure lO(b) ,  displays the radius 
variation for the droplet analysed in figure 4. 

Appendix B 
The numerical analysis of droplet oscillations we use is a least-squares 

approximation to the boundary conditions. The accuracy of this approximation 
depends on the truncation numbers Emax and im, (equations (5) and ( l l ) ) ,  and the 
maximal amplitude of the oscillations. To find the optimal truncation numbers 
control computations were done for the trajectories displayed in figures 3 and 9 by 
varying values of l,,, and imax. The initial values of a, and a, are given in $3.3. The 
calculations are performed for the first period of the fundamental mode keeping the 
relative accuracy per time step below Table 1 displays the time-average values 
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lmax 

3 
4 
5 
5 
6 
7 
8 
9 

10 

L a x  

3 
4 
5 
5 
6 
7 
8 
9 

10 

L i X  

7 
8 

10 
11 
12 
13 
14 
14 
14 

‘max 

7 
8 

10 
11 
12 
13 
14 
14 
14 

3.129 x 
3.152 x 
3.187 x 
3.187 x 
3.183 x 
3.182 x 
3.182 x 
3.181 x 
3.181 x 

ma‘ ((XreI):) 

- 
1.5 x 
4 . 6 ~  10-3 
4.6 x 10-3 
1.2 x 10-3 
1.2 x 10-3 
4.3 x 10-4 
2.9 x 10-4 
3.1 x 10-4 

max (bE/B)  
2.1 x 10-2 
3.8 x 10-3  
2.7 x 10-3  
2.7 x 1 0 - 3  
1.2 x 10-3 
9.6 x 1 0 - 4  
7.8 x 10-4 
6.1 x 10-4  
5.2 x 1 0 - 4  

max ((xrel):) 

- 
- 

2.3 x 
7.8 x 10-3  
6.1 x 10-3 
2.1 x 10-3  
1.3 x 10-3  
1.3 x 10-3  
1.7 x 10-3 

max (ee,) 
3.6 x 10-3 
2.4 x 10-3 
2.4 x 10-3 
1 .1  x 10-3 
5.6 x 10-4 
6.1 x 10-4 
3.4 x 10-4 
4.2 x 10-4 

1.6 x 

CPU (min) 

2 
4 
6 
6.5 

10 
18 
35 
60 
80 

max ( ( X r e 1 ) 3  

6.1 x 10-3 
1.6 x 10-3 
4.6 x 10-4 
4.5 x 10-4 
1.7 x 10-4 
1.1 x 10-4 
7.5 x 10-5 
3.7 x 10-5 
3.7 x 10-5 

max ((Xre1);) 

1.1 x 1 0 - 2  
8.4 x 1 0 - 3  
2.5 x 1 0 - 3  
8.8 x 1 0 - 4  
6.2 x 1 0 - 4  
2.5 x 1 0 - 4  
1.1 x 1 0 - 4  
1.1 x 1 0 - 4  
1.5 x 1 0 - 4  

TABLE 1. Time averaged value of the total energy, its maximum relative deviation and maximum 
values of related minimization errors. The last column gives the required CPU-time. 

of the total energy E / E ,  with their maximum relative deviation, and maximum 
values of the error functions if:,, and ~ r e l ; .  The approximate computation time is 
given in the last column of the table. 
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